Shack-Hartmann wavefront-sensor-based adaptive optics system for multiphoton microscopy.

نویسندگان

  • Jae Won Cha
  • Jerome Ballesta
  • Peter T C So
چکیده

The imaging depth of two-photon excitation fluorescence microscopy is partly limited by the inhomogeneity of the refractive index in biological specimens. This inhomogeneity results in a distortion of the wavefront of the excitation light. This wavefront distortion results in image resolution degradation and lower signal level. Using an adaptive optics system consisting of a Shack-Hartmann wavefront sensor and a deformable mirror, wavefront distortion can be measured and corrected. With adaptive optics compensation, we demonstrate that the resolution and signal level can be better preserved at greater imaging depth in a variety of ex-vivo tissue specimens including mouse tongue muscle, heart muscle, and brain. However, for these highly scattering tissues, we find signal degradation due to scattering to be a more dominant factor than aberration.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

hack-Hartmann wavefront-sensor-based adaptive optics ystem for multiphoton microscopy

Hartmann wavefront-sensor-based adaptive optics system for multiphoton microscopy. Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Abstract. The imaging depth of t...

متن کامل

Study of a MEMS-based Shack-Hartmann wavefront sensor with adjustable pupil sampling for astronomical adaptive optics.

We introduce a Shack-Hartmann wavefront sensor for adaptive optics that enables dynamic control of the spatial sampling of an incoming wavefront using a segmented mirror microelectrical mechanical systems (MEMS) device. Unlike a conventional lenslet array, subapertures are defined by either segments or groups of segments of a mirror array, with the ability to change spatial pupil sampling arbit...

متن کامل

Detection of phase singularities with a Shack-Hartmann wavefront sensor.

While adaptive optical systems are able to remove moderate wavefront distortions in scintillated optical beams, phase singularities that appear in strongly scintillated beams can severely degrade the performance of such an adaptive optical system. Therefore the detection of these phase singularities is an important aspect of strong-scintillation adaptive optics. We investigate the detection of ...

متن کامل

Application of Shack-hartmann Wavefront Sensors to Optical System Calibration and Alignment

While Shack-Hartmann wavefront sensors are commonly used for adaptive optics, they have many other applications. The modern Shack-Hartmann wavefront sensor is compact, rugged, and insensitive to vibration, and has fully integrated data acquisition and analysis. Furthermore, even wavefronts of broadband sources that cannot normally be tested with interferometers can be measured with Shack-Hartma...

متن کامل

Phase contrast techniques for wavefront sensing and calibration in adaptive optics

The wavefront sensor is the most critical component of an adaptive optics (AO) system. Most astronomical systems use one of a small number of alternatives, notably the Shack-Hartmann or the curvature sensor; these are sensitive to the first and second derivative of the wavefront phase, respectively. In this paper, we explore a novel adaptation of the phase-contrast techmque developed for micros...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of biomedical optics

دوره 15 4  شماره 

صفحات  -

تاریخ انتشار 2010